Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
2.
Curr Opin Rheumatol ; 32(5): 449-457, 2020 09.
Article in English | MEDLINE | ID: covidwho-2319043

ABSTRACT

PURPOSE OF REVIEW: The current review highlights recent insights into direct antiviral effects by antimalarials against severe acute respiratory syndrome (SARS)-CoV-2 and other viruses and their potential indirect effects on the host by avoiding exaggerated immune responses (reduced cytokine release, Toll-like receptor response, antigen presentation related to lysosomal processing). RECENT FINDINGS: Currently, there is a large debate on the use of antimalarials for prophylaxis and treatment of SARS-CoV-2-induced disease based on preclinical in-vitro data, small case series and extrapolation from earlier studies of their effect on intracellular pathogens, including many viruses. Hydroxychloroquine (HCQ) or chloroquine have not demonstrated robust efficacy in prior randomized controlled studies against several other viruses. In-vitro data indicate a reduced viral replication of SARS-CoV-2. Especially immunomodulatory effects of antimalarials might also contribute to a clinical efficacy. For SARS-CoV-2 various large studies will provide answers as to whether antimalarials have a place in prophylaxis or treatment of the acute virus infection with SARS-CoV-2 but compelling data are missing so far. SUMMARY: In-vitro data provide a theoretical framework for an efficacy of antimalarials in SARS-CoV-2-induced disease but clinical proof is currently missing.


Subject(s)
Antimalarials/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antiviral Agents/therapeutic use , COVID-19 , Chloroquine/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
3.
Eur J Clin Pharmacol ; 79(6): 723-751, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2305199

ABSTRACT

INTRODUCTION: Drug repositioning is a strategy to identify a new therapeutic indication for molecules that have been approved for other conditions, aiming to speed up the traditional drug development process and reduce its costs. The high prevalence and incidence of coronavirus disease 2019 (COVID-19) underline the importance of searching for a safe and effective treatment for the disease, and drug repositioning is the most rational strategy to achieve this goal in a short period of time. Another advantage of repositioning is the fact that these compounds already have established synthetic routes, which facilitates their production at the industrial level. However, the hope for treatment cannot allow the indiscriminate use of medicines without a scientific basis. RESULTS: The main small molecules in clinical trials being studied to be potentially repositioned to treat COVID-19 are chloroquine, hydroxychloroquine, ivermectin, favipiravir, colchicine, remdesivir, dexamethasone, nitazoxanide, azithromycin, camostat, methylprednisolone, and baricitinib. In the context of clinical tests, in general, they were carried out under the supervision of large consortiums with a methodology based on and recognized in the scientific community, factors that ensure the reliability of the data collected. From the synthetic perspective, compounds with less structural complexity have more simplified synthetic routes. Stereochemical complexity still represents the major challenge in the preparation of dexamethasone, ivermectin, and azithromycin, for instance. CONCLUSION: Remdesivir and baricitinib were approved for the treatment of hospitalized patients with severe COVID-19. Dexamethasone and methylprednisolone should be used with caution. Hydroxychloroquine, chloroquine, ivermectin, and azithromycin are ineffective for the treatment of the disease, and the other compounds presented uncertain results. Preclinical and clinical studies should not be analyzed alone, and their methodology's accuracy should also be considered. Regulatory agencies are responsible for analyzing the efficacy and safety of a treatment and must be respected as the competent authorities for this decision, avoiding the indiscriminate use of medicines.


Subject(s)
COVID-19 , Humans , Drug Repositioning/methods , SARS-CoV-2 , Hydroxychloroquine/therapeutic use , Pandemics , Azithromycin , Ivermectin/therapeutic use , Reproducibility of Results , Chloroquine/therapeutic use , Dexamethasone/therapeutic use , Methylprednisolone , Antiviral Agents/therapeutic use
5.
Acad Emerg Med ; 27(6): 493-504, 2020 06.
Article in English | MEDLINE | ID: covidwho-2223209

ABSTRACT

OBJECTIVES: The emergence of SARS-CoV-2 has presented clinicians with a difficult therapeutic dilemma. With supportive care as the current mainstay of treatment, the fatality rate of COVID-19 is 6.9%. There are currently several trials assessing the efficacy of different antivirals as treatment. Of these, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) have garnered the most attention. METHODS: In this study, the literature currently available on CQ and HCQ as treatment of COVID-19 was surveyed using EMBASE, PubMed, Cochrane Library, MedRxiv, and one clinical trial registry. Upon gathering published and preprint trials, risk of bias was assessed using Cochrane Risk of Bias Tool 2.0. RESULTS: There are currently seven completed clinical trials and 29 registered clinical trials focusing on HCQ or CQ as a therapeutic avenue for COVID-19. Of these, five of seven trials have shown favorable outcomes for patients using CQ or HCQ and two of seven have shown no change compared to control. However, all seven trials carried varying degrees of bias and poor study design. CONCLUSION: There are currently not enough data available to support the routine use of HCQ and CQ as therapies for COVID-19. Pending further results from more extensive studies with more stringent study parameters, clinicians should defer from routine use of HCQ and CQ. There are several clinical trials currently under way with results expected soon.


Subject(s)
Antimalarials/therapeutic use , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus , COVID-19 , Clinical Trials as Topic , Humans , Pandemics , Research Design , SARS-CoV-2 , Treatment Outcome , COVID-19 Drug Treatment
6.
J Interferon Cytokine Res ; 43(1): 35-42, 2023 01.
Article in English | MEDLINE | ID: covidwho-2188096

ABSTRACT

The human beta-coronavirus strain, OC43, provides a useful model for testing the antiviral activity of various agents. We compared the activity of several antiviral drugs against OC43, including remdesivir, chloroquine, interferon (IFN)-ß, IFN-λ1, and IFN-λ4, in two distinct cell types: human colorectal carcinoma cell line (HCT-8 cells) and normal human bronchial epithelial (NHBE) cells. We also tested whether these agents mediate additive, synergistic, or antagonistic activity against OC43 infection when used in combination. When used as single agents, remdesivir exhibited stronger antiviral activity than chloroquine, and IFN-ß exhibited stronger activity than IFN-λ1 or IFN-λ4 against OC43 in both HCT-8 and NHBE cells. Anakinra (IL-1 inhibitor) and tocilizumab (IL-6 inhibitor) did not mediate any antiviral activity. The combination of IFN-ß plus chloroquine or remdesivir resulted in higher synergy scores and higher expression of IFN-stimulated genes than did IFN-ß alone. In contrast, the combination of remdesivir plus chloroquine resulted in an antagonistic interaction in NHBE cells. Our findings indicate that the combined use of IFN-ß plus remdesivir or chloroquine induces maximal antiviral activity against human coronavirus strain OC43 in primary human respiratory epithelial cells. Furthermore, our experimental OC43 virus infection model provides an excellent method for evaluating the biological activity of antiviral drugs.


Subject(s)
Coronavirus Infections , Coronavirus OC43, Human , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferon-beta/pharmacology , Interferon-beta/therapeutic use , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/metabolism , Chloroquine/pharmacology , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Interferons/metabolism
8.
Int J Antimicrob Agents ; 56(2): 106057, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-2095448

ABSTRACT

There is currently increased interest in the use of the antimalarial drugs chloroquine and hydroxychloroquine for the treatment of other diseases, including cancer and viral infections such as coronavirus disease 2019 (COVID-19). However, the risk of cardiotoxic effects tends to limit their use. In this review, the effects of these drugs on the electrical and mechanical activities of the heart as well as on remodelling of cardiac tissue are presented and the underlying molecular and cellular mechanisms are discussed. The drugs can have proarrhythmic as well as antiarrhythmic actions resulting from their inhibition of ion channels, including voltage-dependent Na+ and Ca2+ channels, background and voltage-dependent K+ channels, and pacemaker channels. The drugs also exert a vagolytic effect due at least in part to a muscarinic receptor antagonist action. They also interfere with normal autophagy flux, an effect that could aggravate ischaemia/reperfusion injury or post-infarct remodelling. Most of the toxic effects occur at high concentrations, following prolonged drug administration or in the context of drug associations.


Subject(s)
Chloroquine/adverse effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus , COVID-19 , Chloroquine/therapeutic use , Humans , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
9.
Clin Transl Sci ; 15(10): 2279-2292, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1978434

ABSTRACT

Emergency Use Authorization (EUA) allows the US Food and Drug Administration (FDA) to expedite the availability of therapeutics in the context of a public health emergency. To date, an evidentiary standard for clinical efficacy to support an EUA has not yet been established. This review examines the clinical data submitted in support of EUA for antiviral and anti-inflammatory therapeutics for coronavirus disease 2019 (COVID-19) through December of 2021 and the resilience of the authorization as new clinical data arose subsequent to the authorization. In the vast majority of cases, EUA was supported by at least one well-powered randomized controlled trial (RCT) where statistically significant efficacy was demonstrated. This included branded medications already approved for use outside of the context of COVID-19. When used, the standard of a single RCT seemed to provide adequate evidence of clinical efficacy, such that subsequent clinical studies generally supported or expanded the EUA of the therapeutic in question. The lone generic agent that was granted EUA (chloroquine/hydroxychloroquine) was not supported by a well-controlled RCT, and the EUA was withdrawn within 3 months time. This highlighted not only the ambiguity of the EUA standard, but also the need to provide avenues through which high quality clinical evidence for the efficacy of a generic medication could be obtained. Therefore, maintaining the clinical trial networks assembled during the COVID-19 pandemic could be a critical component of our preparation for future pandemics. Consideration could also be given to establishing a single successful RCT as regulatory guidance for obtaining an EUA.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Humans , Antiviral Agents/therapeutic use , Chloroquine/therapeutic use , Hydroxychloroquine/therapeutic use , SARS-CoV-2 , Treatment Outcome , Randomized Controlled Trials as Topic
10.
Clin Immunol ; 239: 109022, 2022 06.
Article in English | MEDLINE | ID: covidwho-1803761

ABSTRACT

In March 2020, when coronavirus disease 2019 (COVID-19) was just beginning to spread around the world, we presented the potential benefits and controversies of anti-inflammatory therapy in COVID-19 patients based on the limited experience and proposed some types of anti-inflammatory drugs with potential therapeutic value, while without evidence-based data. In the past one more year, many clinical trials or real-world studies have been performed, either confirm or deny the efficacy of certain anti-inflammatory drugs in the treatment of COVID-19. In this review we summarize the progress of anti-inflammatory and immune therapy in COVID-19, including glucocorticoids, IL-6 antagonist, IL-1 inhibitor, kinase inhibitors, non-steroidal anti-inflammatory drugs and chloroquine/hydroxychloroquine.


Subject(s)
COVID-19 Drug Treatment , Anti-Inflammatory Agents/therapeutic use , Chloroquine/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , SARS-CoV-2
11.
Brain Behav Immun ; 87: 59-73, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719339

ABSTRACT

As of April 15, 2020, the ongoing coronavirus disease 2019 (COVID-2019) pandemic has swept through 213 countries and infected more than 1,870,000 individuals, posing an unprecedented threat to international health and the economy. There is currently no specific treatment available for patients with COVID-19 infection. The lessons learned from past management of respiratory viral infections have provided insights into treating COVID-19. Numerous potential therapies, including supportive intervention, immunomodulatory agents, antiviral therapy, and convalescent plasma transfusion, have been tentatively applied in clinical settings. A number of these therapies have provided substantially curative benefits in treating patients with COVID-19 infection. Furthermore, intensive research and clinical trials are underway to assess the efficacy of existing drugs and identify potential therapeutic targets to develop new drugs for treating COVID-19. Herein, we summarize the current potential therapeutic approaches for diseases related to COVID-19 infection and introduce their mechanisms of action, safety, and effectiveness.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adrenal Cortex Hormones/therapeutic use , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Bevacizumab/therapeutic use , COVID-19 , COVID-19 Vaccines , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Interferons/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Killer Cells, Natural , Medicine, Chinese Traditional , Mesenchymal Stem Cell Transplantation , Nitric Oxide/therapeutic use , Pandemics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Trace Elements/therapeutic use , Viral Vaccines/therapeutic use , Vitamins/therapeutic use , Zinc/therapeutic use , COVID-19 Drug Treatment , COVID-19 Serotherapy
12.
J Med Virol ; 94(3): 1154-1161, 2022 03.
Article in English | MEDLINE | ID: covidwho-1718383

ABSTRACT

Numerous reports of neuropsychiatric symptoms highlighted the pathologic potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its relationship the onset and/or exacerbation of mental disease. However, coronavirus disease 2019 (COVID-19) treatments, themselves, must be considered as potential catalysts for new-onset neuropsychiatric symptoms in COVID-19 patients. To date, immediate and long-term neuropsychiatric complications following SARS-CoV-2 infection are currently unknown. Here we report on five patients with SARS-CoV-2 infection with possible associated neuropsychiatric involvement, following them clinically until resolution of their symptoms. We will also discuss the contributory roles of chloroquine and dexamethasone in these neuropsychiatric presentations.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Mental Disorders , COVID-19/complications , Chloroquine/therapeutic use , Humans , Mental Disorders/complications , SARS-CoV-2
13.
Clin Med Res ; 19(4): 179-182, 2021 12.
Article in English | MEDLINE | ID: covidwho-1581437

ABSTRACT

Objective: To assess the effect of chloroquine and hydroxychloroquine on cytokine release syndrome (CRS) in adult patients with coronavirus disease 2019 (COVID-19) having mild to moderate symptoms.Methods: This blinded, placebo-controlled, randomized study was conducted in the Department of Medicine, Pak Emirates Military Hospital Rawalpindi, from June 1-15, 2020. A total of 150 hospitalized patients were enrolled after diagnoses with COVID-19 through reverse transcription polymerase chain reaction (RT-PCR). They were divided into three groups: hydroxychloroquine plus general care (HGC, n=50), chloroquine plus general care (CGC, n=50); and only general care (OGC, n=50). The HGC group received treatment with hydroxychloroquine 400 mg every 12 hours for day one and 200 mg for the next 4 days. The CGC group received treatment with chloroquine 250 mg every 12 hours for 7 days. The OGC group was kept as a control with only general care. After 12 days, the patients were screened for development of CRS through detection of interleukin 6 (IL-6) in serum samples by using Roche cobas e411 electrochemiluminescence immunoassay analyzer.Results: The mean duration from onset of symptoms to randomization was 7.65 days (SD = 3.287 days; range, 2-15 days). The mean age of patients was 37.57 (range 19-63) years. Results showed that out of a total 150 patients, only 10 patients (6%, mean=1.93; CI=1.89-1.97, P=0.651) developed CRS in all study groups. Four patients (8%) developed CRS in the HGC group, 2 patients (4%) in the CGC group, and 4 patients (8%) in the OGC group. There was no significant difference in the mean level of CRS among study groups.Conclusion: Administration of hydroxychloroquine and chloroquine has no effect in reducing the development of CRS in patients with COVID-19 having mild to moderate symptoms.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine , Adult , Antiviral Agents/therapeutic use , Chloroquine/therapeutic use , Cytokine Release Syndrome , Humans , Hydroxychloroquine/therapeutic use , Middle Aged , SARS-CoV-2 , Treatment Outcome , Young Adult
14.
J Med Virol ; 93(12): 6737-6749, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1544327

ABSTRACT

Chloroquine or its derivative hydroxychloroquine (HCQ) combined with or without azithromycin (AZ) have been widely investigated in observational studies as a treatment option for coronavirus 2019 (COVID-19) infection. The network meta-analysis aims to summarize evidence from randomized controlled trials (RCTs) to determine if AZ or HCQ is associated with improved clinical outcomes. PubMed and Embase were searched from inception to March 7, 2021. We included published RCTs that investigated the efficacy of AZ, HCQ, or its combination among hospitalized patients with COVID-19 infection. The outcomes of interest were all-cause mortality and the use of mechanical ventilation. The pooled odds ratio was calculated using a random-effect model. A total of 10 RCTs were analyzed. Participant's mean age ranged from 40.4 to 66.5 years. There was no significant effect on mortality associated with AZ plus HCQ (odds ratio [OR] = 0.562 [95% confidence interval {CI}: 0.168-1.887]), AZ alone (OR = 0.965 [95% CI: 0.865-1.077]), or HCQ alone (OR = 1.122 [95% CI: 0.995-1.266]; p = 0.06). Similarly, based on pooled effect sizes derived from direct and indirect evidence, none of the treatments had a significant benefit in decreasing the use of mechanical ventilation. No heterogeneity was identified (Cochran's Q = 1.68; p = 0.95; τ2 = 0; I2 = 0% [95% CI: 0%-0%]). Evidence from RCTs suggests that AZ with or without HCQ was not associated with a significant effect on the mortality or mechanical ventilation rates in hospitalized patients with COVID-19. More research is needed to explore therapeutics agents that can effectively reduce the mortality or severity of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19 Drug Treatment , Hydroxychloroquine/therapeutic use , Adult , Aged , Chloroquine/therapeutic use , Female , Humans , Male , Middle Aged , Network Meta-Analysis , Randomized Controlled Trials as Topic , Respiration, Artificial/methods
15.
Mol Med Rep ; 24(6)2021 12.
Article in English | MEDLINE | ID: covidwho-1504040

ABSTRACT

The spread of the novel severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) emerged suddenly at the end of 2019 and the disease came to be known as coronavirus disease 2019 (COVID­19). To date, there is no specific therapy established to treat COVID­19. Identifying effective treatments is urgently required to treat patients and stop the transmission of SARS­CoV­2 in humans. For the present review, >100 publications on therapeutic agents for COVID­19, including in vitro and in vivo animal studies, case reports, retrospective analyses and meta­analyses were retrieved from PubMed and analyzed, and promising therapeutic agents that may be used to combat SARS­CoV­2 infection were highlighted. Since the outbreak of COVID­19, different drugs have been repurposed for its treatment. Existing drugs, including chloroquine (CQ), its derivative hydroxychloroquine (HCQ), remdesivir and nucleoside analogues, monoclonal antibodies, convalescent plasma, Chinese herbal medicine and natural compounds for treating COVID­19 evaluated in experimental and clinical studies were discussed. Although early clinical studies suggested that CQ/HCQ produces antiviral action, later research indicated certain controversy regarding their use for treating COVID­19. The molecular mechanisms of these therapeutic agents against SARS­CoV2 have been investigated, including inhibition of viral interactions with angiotensin­converting enzyme 2 receptors in human cells, viral RNA­dependent RNA polymerase, RNA replication and the packaging of viral particles. Potent therapeutic options were reviewed and future challenges to accelerate the development of novel therapeutic agents to treat and prevent COVID­19 were acknowledged.


Subject(s)
COVID-19/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Animals , Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/diagnosis , Chloroquine/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , SARS-CoV-2/isolation & purification , COVID-19 Serotherapy
16.
Arthritis Rheumatol ; 73(12): 2151-2160, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482112

ABSTRACT

Hydroxychloroquine (HCQ) and chloroquine (CQ) are well-established medications used in treating systemic lupus erythematosus and rheumatoid arthritis, as well as skin conditions such as cutaneous lupus erythematosus. In rare cases, arrhythmias and conduction system abnormalities, as well as cardiomyopathy, have been reported in association with HCQ/CQ use. Recently, however, the corrected QT interval (QTc)-prolonging potential of these medications, and risk of torsade de pointes (TdP) in particular, have been highlighted in the setting of their experimental use for COVID-19 infection. This report was undertaken to summarize the current understanding of HCQ/CQ cardiac toxicity, describe QTc prolongation and TdP risks, and discuss areas of priority for future research. A working group of experts across rheumatology, cardiology, and dermatology performed a nonsystematic literature review and offered a consensus-based expert opinion. Current data clearly indicate that HCQ and CQ are invaluable medications in the management of rheumatic and dermatologic diseases, but they are associated with QTc prolongation by directly affecting cardiac repolarization. Prescribing clinicians should be cognizant of this small effect, especially in patients taking additional medications that prolong the QTc interval. Long-term use of HCQ/CQ may lead to a cardiomyopathy associated with arrhythmias and heart failure. Risk and benefit assessment should be considered prior to initiation of any medication, and both initial and ongoing risk-benefit assessments are important with regard to prescription of HCQ/CQ. While cardiac toxicity related to HCQ/CQ treatment of rheumatic diseases is rarely reported, it can be fatal. Awareness of the potential adverse cardiac effects of HCQ and CQ can increase the safe use of these medications. There is a clear need for additional research to allow better understanding of the cardiovascular risk and safety profile of these therapies used in the management of rheumatic and cutaneous diseases.


Subject(s)
Antimalarials/therapeutic use , COVID-19 Drug Treatment , Cardiotoxicity/etiology , Chloroquine/therapeutic use , Hydroxychloroquine/therapeutic use , Antimalarials/adverse effects , Chloroquine/adverse effects , Humans , Hydroxychloroquine/adverse effects
18.
Am J Chin Med ; 48(6): 1263-1277, 2020.
Article in English | MEDLINE | ID: covidwho-1365228

ABSTRACT

In December 2019, a novel coronavirus SARS-CoV-2, causing the disease COVID-19, spread from Wuhan throughout China and has infected people over 200 countries. Thus far, more than 3,400,000 cases and 240,000 deaths have occurred worldwide, and the coronavirus pandemic continues to grip the globe. While numbers of cases in China have been steadying, the number of infections outside China is increasing at a worrying pace. We face an urgent need to control the spread of the COVID-19 epidemic, which is currently expanding to a global pandemic. Efforts have focused on testing antiviral drugs and vaccines, but there is currently no treatment specifically approved. Traditional Chinese medicine (TCM) is grounded in empirical observations and the Chinese people use TCM to overcome these sorts of plagues many times in thousands of years of history. Currently, the Chinese National Health Commission recommended a TCM prescription of Qing-Fei-Pai-Du-Tang (QFPDT) in the latest version of the "Diagnosis and Treatment guidelines of COVID-19" which has been reported to provide reliable effects for COVID-19. While doubts about TCM still exist today, this review paper will describe the rationalities that QFPDT is likely to bring a safe and effective treatment of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Pneumonia, Viral/drug therapy , Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus , COVID-19 , Chloroquine/therapeutic use , Coronavirus Infections/immunology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Drug Combinations , Humans , Indoles/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Lopinavir/therapeutic use , Medicine, Chinese Traditional , Pandemics , Pneumonia, Viral/immunology , Ritonavir/therapeutic use , SARS-CoV-2 , COVID-19 Drug Treatment
19.
PLoS One ; 16(8): e0256035, 2021.
Article in English | MEDLINE | ID: covidwho-1359100

ABSTRACT

BACKGROUND: Chloroquine was promoted as a COVID-19 therapeutic early in the pandemic. Most countries have since discontinued the use of chloroquine due to lack of evidence of any benefit and the risk of severe adverse events. The primary aim of this study was to examine if administering chloroquine during COVID-19 imposed an increased risk of ischemic heart injury or heart failure. METHODS: Medical records, laboratory findings, and electrocardiograms of patients with COVID-19 who were treated with 500 mg chloroquine phosphate daily and controls not treated with chloroquine were reviewed retrospectively. Controls were matched in age and severity of disease. RESULTS: We included 20 patients receiving chloroquine (500 mg twice daily) for an average of five days, and 40 controls. The groups were comparable regarding demographics and biochemical analyses including C-reactive protein, thrombocytes, and creatinine. There were no statistically significant differences in cardiac biomarkers or in electrocardiograms. Median troponin T was 10,8 ng/L in the study group and 17.9 ng/L in the control group, whereas median NT-proBNP was 399 ng/L in patients receiving chloroquine and 349 ng/L in the controls. CONCLUSIONS: We found no increased risk of ischemic heart injury or heart failure as a result of administering chloroquine. However, the use of chloroquine to treat COVID-19 outside of clinical trials is not recommended, considering the lack of evidence of its effectiveness, as well as the elevated risk of fatal arrythmias.


Subject(s)
Antiviral Agents/adverse effects , Biomarkers/analysis , Chloroquine/analogs & derivatives , Heart Failure/etiology , Heart Injuries/etiology , Aged , Antiviral Agents/therapeutic use , C-Reactive Protein/analysis , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Chloroquine/adverse effects , Chloroquine/therapeutic use , Creatinine/analysis , Electrocardiography , Female , Heart Failure/metabolism , Heart Injuries/metabolism , Humans , Male , Middle Aged , Natriuretic Peptide, Brain/analysis , Peptide Fragments/analysis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Troponin T/analysis , COVID-19 Drug Treatment
20.
S Afr Med J ; 111(8): 720-723, 2021 Jun 08.
Article in English | MEDLINE | ID: covidwho-1355170

ABSTRACT

Herbal medicines made from the bark of the Cinchona tree, and later quinine, have been widely used for centuries to treat medical conditions such as tropical malaria. More recently, chloroquine (CQ) and its synthetic derivatives have been used as antimalarials and to treat systemic lupus erythematosus, rheumatoid arthritis, and in the past 14 months or so, COVID-19 pneumonia. Anecdotal evidence and the erratic covering through social media of its potential efficacy in the treatment of COVID-19 pneumonia have resulted in the widespread off-label use of CQ in South Africa and worldwide. This study aimed to show that access to CQ as a chronic medication for rheumatic and musculoskeletal diseases was limited during the COVID-19 pandemic, and that this resulted in an increased incidence of flares in these patients, affecting their morbidity and potentially leading to mortality.


Subject(s)
Chloroquine/pharmacology , Rheumatology/standards , Ambulatory Care Facilities/organization & administration , Ambulatory Care Facilities/statistics & numerical data , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Chloroquine/therapeutic use , Humans , Musculoskeletal Diseases/drug therapy , Rheumatic Diseases/drug therapy , Rheumatology/methods , Rheumatology/statistics & numerical data , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL